Chapter 31

Phonological theory and computational modelling

by Jane Chandlee and Adam Jardine

Phonology Reading Group HT24 Week 4

Xiaoye Wu 2024.2.5

Timeline

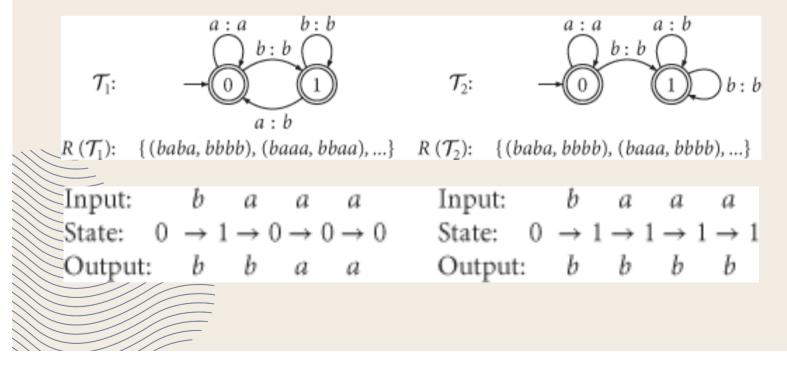
- Evolvement of computational modelling: practical implementation -> active part of phonological theory
- ➤ General Questions:
- How does computational modelling develop along with the development of phonological theory?
- In turn, how does computational modelling contribute to modern phonological theory?

Generative Grammar (SPE, 1968)	Autosegmental Phonology (1970s)	Optimality Theory (1990s)	Stochastic Phonology (2000s) …
L	1	1	I
	1	1	1
Finite-state models			
Linear	> Non-linear		
Rule	-based	-> Constraint-based	
			A probabilistic notion

Automata theory

- Two finite-state models: Finite-State Acceptor (FSA) & Finite-State Transducer (FST)
- Motivation: to define a model that can provide a finite description of the infinite set of well-formed strings in a language

Chomsky (1956): Use FSA to describe sets of strings -> finite-state/regular languages

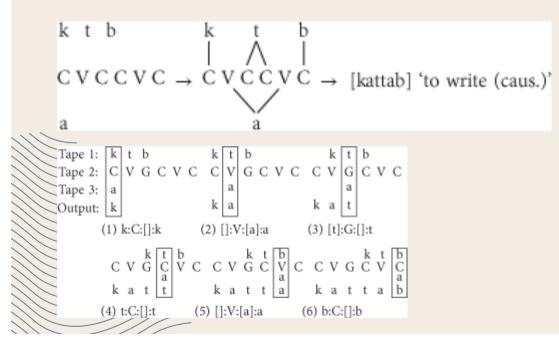

{ab, abab, ababab, h abababab, ababababab, ...} L(A)

Finite-state models

Johnson (1972): use FST to describe relations between strings -> finitestate/regular relations

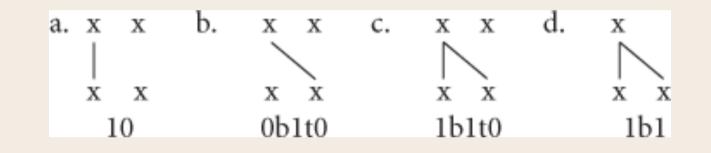
Equivalent to SPE rewrite rule formalism

e.g. a -> b / b _ (simultaneous & iterative)



Non-linear phonology

Question: How could non-linear representations be modelled in a finite-state (linear) framework?


Approach: Linearisation -> find a way to translate non-linear representations into a linear coding

• Kay 1987 (Arabic morphology)

Non-linear phonology

• Kornai 1995 scanning code

Optimality Theory

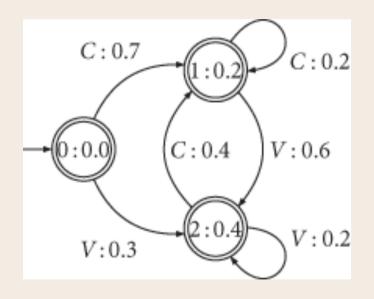
Question: How could constraint-based grammar be modelled in a finite-state framework?

Why is OT > FST a problem?

- 1. OT can generate non-regular relations -> beyond the power of finite-state
- 2. OT evaluates strings globally

Approach: constrict non-regular relations; limit OT grammars to local evaluation

Optimality Theory

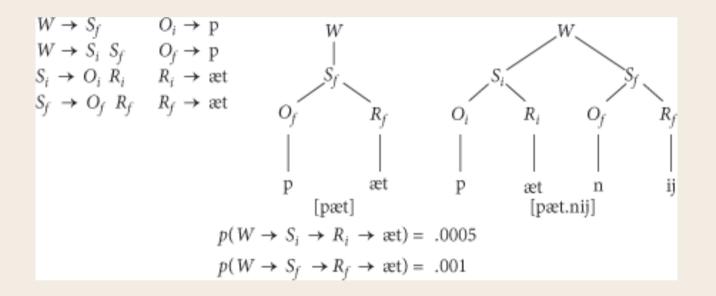

Ellison (1994) relied on three assumptions:

- All constraints are binary (convert non-binary constraints into local binary ones);
- 2) The candidate set produced by GEN is a regular language;
- 3) The constraints can be modelled with regular relations.

Probabilistic models

Model gradient phonological generalisations Approach: add numerical values or weights to the structures

• Weighed FSA (Mohri et al., 1996)



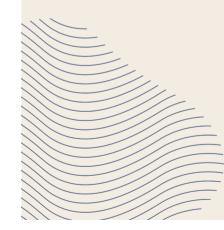
CVCV: 0.7*0.6*0.4*0.6*0.4=0.040 CVCC: 0.7*0.6*0.4*0.2*0.2=0.006

Probabilistic models

 Weighed context-free grammars (WCFGs) (Coleman & Pierrehumbert, 1997): describe hierarchical syllable structures

Probabilistic models in OT

- Stochastic ranking model for Boersma's Gradual Learning Algorithm: adjust the values of constraints
- ->model optionality in native speaker's grammar



Computational nature of phonological patterns

- Lead to better understanding of phonological theory
- Autosegmentel representations

• OT

